

Recent activities of cloud seeding of NIMS/KMA

Ki-ho CHANG, Joo-wan CHA, Yun-kyu IM, Hae Jung KOO, Woonseon JUNG, Youngmi KIM, YongHun RO, Sanghee CHAE, Jung Mo KU, A-reum KO, Miloslav BELORID, Bu yo KIM, Minhoo KIM, Hyunjun HWANG, Dong oh PARK, Sun hee KIM, Yonghee LEE, Seungbum KIM

Research Applications Department

with collaboration of Korea airforce, Korea environment corporation, National Institute of Environmental Research, K-water, and Sunnyair inc.

Need of Weather Modification

Climate change → Increasing trend of **natural hazard related to water shortage**

Need of the advanced cloud seeding skill to reduce Drought, Forest fire, Aerosol, Fog

[Past] Drought reduction

[2020~] Multi-purpose Exps.

- Drought, Forest fire, Aerosol, Fog reduction

Structure of Weather Modification Research

3

Procedure of Weather Modification Experiment

(New tech.) Estimation of enhanced precipitation for each exp.

♦ (Motive) It is difficult to estimate enhanced prep., when mixed with natural precipitation.

→ (New Method) Under similar convergence situation,

Enhan. Prep. = (Prep. in seeded region) – (Prep. In unseeded region)

 \Rightarrow Published in Adv. in Met. (Sep. 2013)

< 1 Nov. 2020>

3) Estimation of Enhan. Prcp.

	Local Time(12:00~18:00)				
Accmu. Prep.	Seeded	Unseeded	Seed – Unseed		
Max.(mm)	24.0	8.5	15.5 (+)		
Ave.(mm)	7.2	3.9	3.3 (+)		
Standard Dev.(mm)	4.65	1.26	-		

(New tech.) Aerosol reduction by seeding (1/2)

♦ (Motive) Rainfall can reduce the PM10/PM2.5(Wei, 2015; Tomasz 2016)

- → (New Method) Seeding ⇒ Enhancing Rainfall/Cloud ⇒ Enhancing the reduction of aerosol
- ♦ (Case study) 11 Dec. 2020, for reducing the polluted particles in basin
 - 1) Enhanced rainfall (estimated 3.3 mm) is spatio-temporally coincided with the simulated results
 - 2) Cloud particle size increases after seeding
 - 3) Radar rainfall shows well the abrupt increase in the simulated region (Seoul)

(New tech.) Aerosol reduction by seeding (2/2)

 \bigcirc (Effect of cloud seeding) Seoul, the estimated enhanced rainfall = 3.3mm

- (PM2.5) Seoul shows the reduction of aerosol, by comparing with the other regions (Incheon, Chunchun)
 - \Rightarrow Published in APJAS(Jan. 2013)

(New tech.) Direct verification by rainfall chemistry

- (Chemical component analysis Results)
- Aircraft experiment for prevention of forest fire(25 Sep. 2020)
- ⇒ Increase of Ca ion concentration in effect area
- · (Effect area) Daegallyeong
- (No-effect area) Sokcho, Yongpyong

Results

(New tech.) Automatic numerical prediction of cloud seeding

Daily numerical predicted results

O Automatic determine of proper seeding line

- 1) Read data from CNTR result
- 2) Decide LWP max time and height at Target site
- 3) Seeding directing(theta(θ)) is determined with wind data at a fixed time and altitude.
- 4) Calculate center of the seeding line and distance from a target area.

Daily numerical predicted results

* Consider raingages below 150 m(MSL) to minimize the orographical effect

(Direct Verification) Chemistry of rainfall

- (Chemical analysis of the sampled rainfall)
 - Increase of seeding components(Na⁺,Ca²⁺) in the sampled rainfall in the simulated effective region after seeding, comparing with ones in the non-effective regions.
 - ⇒ Direct verification of cloud seeding effect !! (J. Env. Sci. Interational, in press)

(New material) Develop. Cycle: Chamber \Rightarrow Modeling \Rightarrow Exps. \Rightarrow Improve

Cloud/Aerosol Chamber (K-CPEC)

- New flare or powder test using by of K-CPEC
- Cloud physical observation by controlling the pressure and temperature

Parameterization for Numerical Model of cloud seeding

Improve

- Fitting the observed aerosol/cloud DSD to the simulation parameters of cloud seeding model

Application of Parameterized Numerical Model to New-material Exps.

Observe

- Numerical model with newly fitted parameters is applied for **understanding of seeding exps.** with new material

Year	Material	Туре	Ave. size	GCC N ratio	Enhanced rainfall (Analyzed)
2022	NaCl,CaCl2	powder	~80um	1.7%	3.7mm
2023	CaCl2	powder	~16um	17%	4.1mm

* CaCl2 Flare(ICE): GCCN ~ 0.1%, Max. analyzed enhanced: 3.5mm(`20~`23)

- O Results during the 4 years(2020~2023)
- No. of exps. : 101
- Validated no. of exps. : 71(70%)

- *73% reported(India 2022, no. of exps: 78)
- * Validation method: Precipitation and doud enhancement are simultaneously detected within the simulated seeding effective region
- Ave./Wax enhanced precipitation: 1.4/4.5 mm *USA: Max. 5.0mm(Pokhrel, 2014)
- Ave. seeding effective region: 1,028 km² (Simulated enhancement above 0.5mm)

Elements	Past (`08~`19)	Present (`20~`23)	Future (`24~`27)
Aircraft	very small (Sessna205)	small (Kingair350)	Small 3~4 (Kingair 350, 90, Airforce)
Stage	Basic (1h seeding)	Research (1h seeding)	Demonstration (3h> seeding)
Ave. Enhan. Prcp. per 1-hr seeding (mm)	0.5	1.4	1.4
Ave. effective area(km ²)	1,260(Assume)	1,028(Simuation)	1,028(Simulation)
Annual no. of exps./ Validation ratio (%)/ Annual enhan. prcp. (mm)	3/33/0.5	25/70/23.1	100/70/92
Annual reducible days of forest fire * 1mm→0.21 reducible days(Forest Admin., 2021)	0.1	5	19
Annual enhanced water(M ton)	0.2	19.6	95

< Past, present, and future of cloud seeding in Korea >

Plan after 2024

- Demonstration project of cloud seeding operation (2024-2028, 5 yrs.)
 - (Plan) above 100 exps./yr \Rightarrow Enhan. prcp. >100mm/yr. (7% of yearly precipitation)
 - (Command center) Kimpo airport office(7 persons)
 - (Facilities) 4 aircrafts + 6 ion-component rain sampler (2 mobile)
 - 1 Airforce(cn-235): 1~3 tons of powder type ptls.
 - · 1 NARA(kingair 350): 24 flares and 101 ejectables, airborne radar
 - · 2 company(2 kingair 90): 2 C90(48 flares, 303 ejec. and 350kg powder) moidified by WMI
 - * E90/caravan(350kg powder): additionally added
 - **Sat. Comm. including message/data exch. : all aircrafts, CWIP sensors: 2 C90
 - (Training) Preparing the Univ. (meteo./pilot) courses, NIMS training (analy. adapt), and participation of ND&WMI exps.

< plan for the command center>

ΛΛ

Thank you so much

